nums.models.glms module
-
class
nums.models.glms.
ElasticNet
(alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.
ExponentialRegression
(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.
GLM
(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
object
-
class
nums.models.glms.
Lasso
(alpha=1.0, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.
LinearRegression
(tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source]
-
class
nums.models.glms.
LinearRegressionBase
(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.
LogisticRegression
(penalty='none', C=1.0, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
class
nums.models.glms.
PoissonRegression
(penalty='none', alpha=1.0, l1_ratio=0.5, tol=0.0001, max_iter=100, solver='newton', lr=0.01, random_state=None, fit_intercept=True, normalize=False)[source] Bases:
nums.models.glms.GLM
-
nums.models.glms.
PoissonRegressor
alias of
nums.models.glms.PoissonRegression