nums.numpy.nanmin
-
nums.numpy.
nanmin
(a, axis=None, out=None, keepdims=False)[source] Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encountered a
RuntimeWarning
is raised and Nan is returned for that slice.This docstring was copied from numpy.nanmin.
Some inconsistencies with the NumS version may exist.
- Parameters
a (BlockArray) – Array containing numbers whose minimum is desired. If a is not an array, a conversion is attempted.
axis ({int, tuple of int, None}, optional) – Axis or axes along which the minimum is computed. The default is to compute the minimum of the flattened array.
out (BlockArray, optional) – Alternate output array in which to place the result. The default is
None
; if provided, it must have the same shape as the expected output, but the type will be cast if necessary.keepdims (bool, optional) –
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a.
If the value is anything but the default, then keepdims will be passed through to the min method of sub-classes of BlockArray. If the sub-classes methods does not implement keepdims any exceptions will be raised.
- Returns
nanmin – An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, an BlockArray scalar is returned. The same dtype as a is returned.
- Return type
See also
nanmax
The maximum value of an array along a given axis, ignoring any NaNs.
amin
The minimum value of an array along a given axis, propagating any NaNs.
fmin
Element-wise minimum of two arrays, ignoring any NaNs.
minimum
Element-wise minimum of two arrays, propagating any NaNs.
isnan
Shows which elements are Not a Number (NaN).
isfinite
Shows which elements are neither NaN nor infinity.
Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number.
If the input has a integer type the function is equivalent to nps.min.
‘out’ is currently not supported.
Examples
The doctests shown below are copied from NumPy. They won’t show the correct result until you operate
get()
.>>> a = nps.array([[1, 2], [3, nps.nan]]) >>> nps.nanmin(a).get() arary(1.) >>> nps.nanmin(a, axis=0).get() array([1., 2.]) >>> nps.nanmin(a, axis=1).get() array([1., 3.])